{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE TypeFamilies #-}
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Trustworthy #-}
#endif
#include "kan-extensions-common.h"
module Data.Functor.Coyoneda
( Coyoneda(..)
, liftCoyoneda, lowerCoyoneda, lowerM, hoistCoyoneda
, coyonedaToLan, lanToCoyoneda
) where
import Control.Applicative as A
import Control.Monad (MonadPlus(..), liftM)
import Control.Monad.Fix
import Control.Monad.Trans.Class
import Control.Comonad
import Control.Comonad.Trans.Class
import Data.Distributive
#if !LIFTED_FUNCTOR_CLASSES
import Data.Function (on)
#endif
import Data.Functor.Adjunction
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Functor.Extend
import Data.Functor.Identity
import Data.Functor.Kan.Lan
import Data.Functor.Plus
import Data.Functor.Rep
import Data.Foldable
import Data.Traversable
import Data.Semigroup.Foldable
import Data.Semigroup.Traversable
import Prelude hiding (sequence, lookup, zipWith)
import Text.Read hiding (lift)
data Coyoneda f a where
Coyoneda :: (b -> a) -> f b -> Coyoneda f a
coyonedaToLan :: Coyoneda f a -> Lan Identity f a
coyonedaToLan :: forall (f :: * -> *) a. Coyoneda f a -> Lan Identity f a
coyonedaToLan (Coyoneda b -> a
ba f b
fb) = (Identity b -> a) -> f b -> Lan Identity f a
forall {k} (g :: k -> *) (b :: k) a (h :: k -> *).
(g b -> a) -> h b -> Lan g h a
Lan (b -> a
ba (b -> a) -> (Identity b -> b) -> Identity b -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Identity b -> b
forall a. Identity a -> a
runIdentity) f b
fb
{-# INLINE coyonedaToLan #-}
lanToCoyoneda :: Lan Identity f a -> Coyoneda f a
lanToCoyoneda :: forall (f :: * -> *) a. Lan Identity f a -> Coyoneda f a
lanToCoyoneda (Lan Identity b -> a
iba f b
fb) = (b -> a) -> f b -> Coyoneda f a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda (Identity b -> a
iba (Identity b -> a) -> (b -> Identity b) -> b -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Identity b
forall a. a -> Identity a
Identity) f b
fb
{-# INLINE lanToCoyoneda #-}
instance Functor (Coyoneda f) where
fmap :: forall a b. (a -> b) -> Coyoneda f a -> Coyoneda f b
fmap a -> b
f (Coyoneda b -> a
g f b
v) = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda (a -> b
f (a -> b) -> (b -> a) -> b -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
g) f b
v
{-# INLINE fmap #-}
instance Apply f => Apply (Coyoneda f) where
Coyoneda b -> a -> b
mf f b
m <.> :: forall a b. Coyoneda f (a -> b) -> Coyoneda f a -> Coyoneda f b
<.> Coyoneda b -> a
nf f b
n =
f b -> Coyoneda f b
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f b -> Coyoneda f b) -> f b -> Coyoneda f b
forall a b. (a -> b) -> a -> b
$ (\b
mres b
nres -> b -> a -> b
mf b
mres (b -> a
nf b
nres)) (b -> b -> b) -> f b -> f (b -> b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f b
m f (b -> b) -> f b -> f b
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f b
n
{-# INLINE (<.>) #-}
Coyoneda b -> a
_ f b
m .> :: forall a b. Coyoneda f a -> Coyoneda f b -> Coyoneda f b
.> Coyoneda b -> b
g f b
n = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
g (f b
m f b -> f b -> f b
forall a b. f a -> f b -> f b
forall (f :: * -> *) a b. Apply f => f a -> f b -> f b
.> f b
n)
{-# INLINE (.>) #-}
Coyoneda b -> a
f f b
m <. :: forall a b. Coyoneda f a -> Coyoneda f b -> Coyoneda f a
<. Coyoneda b -> b
_ f b
n = (b -> a) -> f b -> Coyoneda f a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> a
f (f b
m f b -> f b -> f b
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Apply f => f a -> f b -> f a
<. f b
n)
{-# INLINE (<.) #-}
instance Applicative f => Applicative (Coyoneda f) where
pure :: forall a. a -> Coyoneda f a
pure = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a) -> (a -> f a) -> a -> Coyoneda f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> f a
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
{-# INLINE pure #-}
Coyoneda b -> a -> b
mf f b
m <*> :: forall a b. Coyoneda f (a -> b) -> Coyoneda f a -> Coyoneda f b
<*> Coyoneda b -> a
nf f b
n =
f b -> Coyoneda f b
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f b -> Coyoneda f b) -> f b -> Coyoneda f b
forall a b. (a -> b) -> a -> b
$ (\b
mres b
nres -> b -> a -> b
mf b
mres (b -> a
nf b
nres)) (b -> b -> b) -> f b -> f (b -> b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f b
m f (b -> b) -> f b -> f b
forall a b. f (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f b
n
{-# INLINE (<*>) #-}
Coyoneda b -> a
_ f b
m *> :: forall a b. Coyoneda f a -> Coyoneda f b -> Coyoneda f b
*> Coyoneda b -> b
g f b
n = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
g (f b
m f b -> f b -> f b
forall a b. f a -> f b -> f b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> f b
n)
{-# INLINE (*>) #-}
Coyoneda b -> a
f f b
m <* :: forall a b. Coyoneda f a -> Coyoneda f b -> Coyoneda f a
<* Coyoneda b -> b
_ f b
n = (b -> a) -> f b -> Coyoneda f a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> a
f (f b
m f b -> f b -> f b
forall a b. f a -> f b -> f a
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* f b
n)
{-# INLINE (<*) #-}
instance Alternative f => Alternative (Coyoneda f) where
empty :: forall a. Coyoneda f a
empty = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda f a
forall a. f a
forall (f :: * -> *) a. Alternative f => f a
empty
{-# INLINE empty #-}
Coyoneda f a
m <|> :: forall a. Coyoneda f a -> Coyoneda f a -> Coyoneda f a
<|> Coyoneda f a
n = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a) -> f a -> Coyoneda f a
forall a b. (a -> b) -> a -> b
$ Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda Coyoneda f a
m f a -> f a -> f a
forall a. f a -> f a -> f a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda Coyoneda f a
n
{-# INLINE (<|>) #-}
some :: forall a. Coyoneda f a -> Coyoneda f [a]
some = f [a] -> Coyoneda f [a]
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f [a] -> Coyoneda f [a])
-> (Coyoneda f a -> f [a]) -> Coyoneda f a -> Coyoneda f [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f a -> f [a]
forall a. f a -> f [a]
forall (f :: * -> *) a. Alternative f => f a -> f [a]
A.some (f a -> f [a]) -> (Coyoneda f a -> f a) -> Coyoneda f a -> f [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda
{-# INLINE some #-}
many :: forall a. Coyoneda f a -> Coyoneda f [a]
many = f [a] -> Coyoneda f [a]
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f [a] -> Coyoneda f [a])
-> (Coyoneda f a -> f [a]) -> Coyoneda f a -> Coyoneda f [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f a -> f [a]
forall a. f a -> f [a]
forall (f :: * -> *) a. Alternative f => f a -> f [a]
A.many (f a -> f [a]) -> (Coyoneda f a -> f a) -> Coyoneda f a -> f [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda
{-# INLINE many #-}
instance Alt f => Alt (Coyoneda f) where
Coyoneda f a
m <!> :: forall a. Coyoneda f a -> Coyoneda f a -> Coyoneda f a
<!> Coyoneda f a
n = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a) -> f a -> Coyoneda f a
forall a b. (a -> b) -> a -> b
$ Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda Coyoneda f a
m f a -> f a -> f a
forall a. f a -> f a -> f a
forall (f :: * -> *) a. Alt f => f a -> f a -> f a
<!> Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda Coyoneda f a
n
{-# INLINE (<!>) #-}
instance Plus f => Plus (Coyoneda f) where
zero :: forall a. Coyoneda f a
zero = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda f a
forall a. f a
forall (f :: * -> *) a. Plus f => f a
zero
{-# INLINE zero #-}
instance Bind m => Bind (Coyoneda m) where
Coyoneda b -> a
f m b
v >>- :: forall a b. Coyoneda m a -> (a -> Coyoneda m b) -> Coyoneda m b
>>- a -> Coyoneda m b
k = m b -> Coyoneda m b
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (m b
v m b -> (b -> m b) -> m b
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- Coyoneda m b -> m b
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda (Coyoneda m b -> m b) -> (b -> Coyoneda m b) -> b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Coyoneda m b
k (a -> Coyoneda m b) -> (b -> a) -> b -> Coyoneda m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
f)
{-# INLINE (>>-) #-}
instance Monad m => Monad (Coyoneda m) where
#if __GLASGOW_HASKELL__ < 710
return = Coyoneda id . return
{-# INLINE return #-}
Coyoneda _ m >> Coyoneda g n = Coyoneda g (m >> n)
{-# INLINE (>>) #-}
#else
>> :: forall a b. Coyoneda m a -> Coyoneda m b -> Coyoneda m b
(>>) = Coyoneda m a -> Coyoneda m b -> Coyoneda m b
forall a b. Coyoneda m a -> Coyoneda m b -> Coyoneda m b
forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
{-# INLINE (>>) #-}
#endif
Coyoneda b -> a
f m b
v >>= :: forall a b. Coyoneda m a -> (a -> Coyoneda m b) -> Coyoneda m b
>>= a -> Coyoneda m b
k = m b -> Coyoneda m b
forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m b
v m b -> (b -> m b) -> m b
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Coyoneda m b -> m b
forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM (Coyoneda m b -> m b) -> (b -> Coyoneda m b) -> b -> m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Coyoneda m b
k (a -> Coyoneda m b) -> (b -> a) -> b -> Coyoneda m b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
f)
{-# INLINE (>>=) #-}
instance MonadTrans Coyoneda where
lift :: forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
lift = (a -> a) -> m a -> Coyoneda m a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda a -> a
forall a. a -> a
id
{-# INLINE lift #-}
instance MonadFix f => MonadFix (Coyoneda f) where
mfix :: forall a. (a -> Coyoneda f a) -> Coyoneda f a
mfix a -> Coyoneda f a
f = f a -> Coyoneda f a
forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (f a -> Coyoneda f a) -> f a -> Coyoneda f a
forall a b. (a -> b) -> a -> b
$ (a -> f a) -> f a
forall a. (a -> f a) -> f a
forall (m :: * -> *) a. MonadFix m => (a -> m a) -> m a
mfix (Coyoneda f a -> f a
forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM (Coyoneda f a -> f a) -> (a -> Coyoneda f a) -> a -> f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Coyoneda f a
f)
{-# INLINE mfix #-}
instance MonadPlus f => MonadPlus (Coyoneda f) where
mzero :: forall a. Coyoneda f a
mzero = f a -> Coyoneda f a
forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift f a
forall a. f a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
{-# INLINE mzero #-}
Coyoneda f a
m mplus :: forall a. Coyoneda f a -> Coyoneda f a -> Coyoneda f a
`mplus` Coyoneda f a
n = f a -> Coyoneda f a
forall (m :: * -> *) a. Monad m => m a -> Coyoneda m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (f a -> Coyoneda f a) -> f a -> Coyoneda f a
forall a b. (a -> b) -> a -> b
$ Coyoneda f a -> f a
forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM Coyoneda f a
m f a -> f a -> f a
forall a. f a -> f a -> f a
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` Coyoneda f a -> f a
forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM Coyoneda f a
n
{-# INLINE mplus #-}
instance Representable f => Representable (Coyoneda f) where
type Rep (Coyoneda f) = Rep f
tabulate :: forall a. (Rep (Coyoneda f) -> a) -> Coyoneda f a
tabulate = f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a)
-> ((Rep f -> a) -> f a) -> (Rep f -> a) -> Coyoneda f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Rep f -> a) -> f a
forall a. (Rep f -> a) -> f a
forall (f :: * -> *) a. Representable f => (Rep f -> a) -> f a
tabulate
{-# INLINE tabulate #-}
index :: forall a. Coyoneda f a -> Rep (Coyoneda f) -> a
index = f a -> Rep f -> a
forall a. f a -> Rep f -> a
forall (f :: * -> *) a. Representable f => f a -> Rep f -> a
index (f a -> Rep f -> a)
-> (Coyoneda f a -> f a) -> Coyoneda f a -> Rep f -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coyoneda f a -> f a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda
{-# INLINE index #-}
instance Extend w => Extend (Coyoneda w) where
extended :: forall a b. (Coyoneda w a -> b) -> Coyoneda w a -> Coyoneda w b
extended Coyoneda w a -> b
k (Coyoneda b -> a
f w b
v) = (b -> b) -> w b -> Coyoneda w b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
forall a. a -> a
id (w b -> Coyoneda w b) -> w b -> Coyoneda w b
forall a b. (a -> b) -> a -> b
$ (w b -> b) -> w b -> w b
forall a b. (w a -> b) -> w a -> w b
forall (w :: * -> *) a b. Extend w => (w a -> b) -> w a -> w b
extended (Coyoneda w a -> b
k (Coyoneda w a -> b) -> (w b -> Coyoneda w a) -> w b -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> a) -> w b -> Coyoneda w a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> a
f) w b
v
{-# INLINE extended #-}
instance Comonad w => Comonad (Coyoneda w) where
extend :: forall a b. (Coyoneda w a -> b) -> Coyoneda w a -> Coyoneda w b
extend Coyoneda w a -> b
k (Coyoneda b -> a
f w b
v) = (b -> b) -> w b -> Coyoneda w b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
forall a. a -> a
id (w b -> Coyoneda w b) -> w b -> Coyoneda w b
forall a b. (a -> b) -> a -> b
$ (w b -> b) -> w b -> w b
forall a b. (w a -> b) -> w a -> w b
forall (w :: * -> *) a b. Comonad w => (w a -> b) -> w a -> w b
extend (Coyoneda w a -> b
k (Coyoneda w a -> b) -> (w b -> Coyoneda w a) -> w b -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> a) -> w b -> Coyoneda w a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> a
f) w b
v
{-# INLINE extend #-}
extract :: forall a. Coyoneda w a -> a
extract (Coyoneda b -> a
f w b
v) = b -> a
f (w b -> b
forall a. w a -> a
forall (w :: * -> *) a. Comonad w => w a -> a
extract w b
v)
{-# INLINE extract #-}
instance ComonadTrans Coyoneda where
lower :: forall (w :: * -> *) a. Comonad w => Coyoneda w a -> w a
lower (Coyoneda b -> a
f w b
a) = (b -> a) -> w b -> w a
forall a b. (a -> b) -> w a -> w b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f w b
a
{-# INLINE lower #-}
instance Foldable f => Foldable (Coyoneda f) where
foldMap :: forall m a. Monoid m => (a -> m) -> Coyoneda f a -> m
foldMap a -> m
f (Coyoneda b -> a
k f b
a) = (b -> m) -> f b -> m
forall m a. Monoid m => (a -> m) -> f a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap (a -> m
f (a -> m) -> (b -> a) -> b -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
k) f b
a
{-# INLINE foldMap #-}
instance Foldable1 f => Foldable1 (Coyoneda f) where
foldMap1 :: forall m a. Semigroup m => (a -> m) -> Coyoneda f a -> m
foldMap1 a -> m
f (Coyoneda b -> a
k f b
a) = (b -> m) -> f b -> m
forall m a. Semigroup m => (a -> m) -> f a -> m
forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
foldMap1 (a -> m
f (a -> m) -> (b -> a) -> b -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
k) f b
a
{-# INLINE foldMap1 #-}
instance Traversable f => Traversable (Coyoneda f) where
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Coyoneda f a -> f (Coyoneda f b)
traverse a -> f b
f (Coyoneda b -> a
k f b
a) = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
forall a. a -> a
id (f b -> Coyoneda f b) -> f (f b) -> f (Coyoneda f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (b -> f b) -> f b -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse (a -> f b
f (a -> f b) -> (b -> a) -> b -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
k) f b
a
{-# INLINE traverse #-}
instance Traversable1 f => Traversable1 (Coyoneda f) where
traverse1 :: forall (f :: * -> *) a b.
Apply f =>
(a -> f b) -> Coyoneda f a -> f (Coyoneda f b)
traverse1 a -> f b
f (Coyoneda b -> a
k f b
a) = (b -> b) -> f b -> Coyoneda f b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
forall a. a -> a
id (f b -> Coyoneda f b) -> f (f b) -> f (Coyoneda f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (b -> f b) -> f b -> f (f b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b. Apply f => (a -> f b) -> f a -> f (f b)
traverse1 (a -> f b
f (a -> f b) -> (b -> a) -> b -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> a
k) f b
a
{-# INLINE traverse1 #-}
instance Distributive f => Distributive (Coyoneda f) where
collect :: forall (f :: * -> *) a b.
Functor f =>
(a -> Coyoneda f b) -> f a -> Coyoneda f (f b)
collect a -> Coyoneda f b
f = f (f b) -> Coyoneda f (f b)
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f (f b) -> Coyoneda f (f b))
-> (f a -> f (f b)) -> f a -> Coyoneda f (f b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> f b) -> f a -> f (f b)
forall (g :: * -> *) (f :: * -> *) a b.
(Distributive g, Functor f) =>
(a -> g b) -> f a -> g (f b)
forall (f :: * -> *) a b. Functor f => (a -> f b) -> f a -> f (f b)
collect (Coyoneda f b -> f b
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda (Coyoneda f b -> f b) -> (a -> Coyoneda f b) -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Coyoneda f b
f)
{-# INLINE collect #-}
instance (Functor f, Show1 f) => Show1 (Coyoneda f) where
#if LIFTED_FUNCTOR_CLASSES
liftShowsPrec :: forall a.
(Int -> a -> ShowS)
-> ([a] -> ShowS) -> Int -> Coyoneda f a -> ShowS
liftShowsPrec Int -> a -> ShowS
sp [a] -> ShowS
sl Int
d (Coyoneda b -> a
f f b
a) =
(Int -> f a -> ShowS) -> String -> Int -> f a -> ShowS
forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
showsUnaryWith ((Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
liftShowsPrec Int -> a -> ShowS
sp [a] -> ShowS
sl) String
"liftCoyoneda" Int
d ((b -> a) -> f b -> f a
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f f b
a)
{-# INLINE liftShowsPrec #-}
#else
showsPrec1 d (Coyoneda f a) = showParen (d > 10) $
showString "liftCoyoneda " . showsPrec1 11 (fmap f a)
{-# INLINE showsPrec1 #-}
#endif
instance (Read1 f) => Read1 (Coyoneda f) where
#if LIFTED_FUNCTOR_CLASSES
liftReadsPrec :: forall a.
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Coyoneda f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl = (String -> ReadS (Coyoneda f a)) -> Int -> ReadS (Coyoneda f a)
forall a. (String -> ReadS a) -> Int -> ReadS a
readsData ((String -> ReadS (Coyoneda f a)) -> Int -> ReadS (Coyoneda f a))
-> (String -> ReadS (Coyoneda f a)) -> Int -> ReadS (Coyoneda f a)
forall a b. (a -> b) -> a -> b
$
(Int -> ReadS (f a))
-> String
-> (f a -> Coyoneda f a)
-> String
-> ReadS (Coyoneda f a)
forall a t.
(Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
readsUnaryWith ((Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl) String
"liftCoyoneda" f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda
{-# INLINE liftReadsPrec #-}
#else
readsPrec1 d = readParen (d > 10) $ \r' ->
[ (liftCoyoneda f, t)
| ("liftCoyoneda", s) <- lex r'
, (f, t) <- readsPrec1 11 s
]
{-# INLINE readsPrec1 #-}
#endif
instance (Functor f, Show1 f, Show a) => Show (Coyoneda f a) where
showsPrec :: Int -> Coyoneda f a -> ShowS
showsPrec = Int -> Coyoneda f a -> ShowS
forall (f :: * -> *) a. (Show1 f, Show a) => Int -> f a -> ShowS
showsPrec1
{-# INLINE showsPrec #-}
instance Read (f a) => Read (Coyoneda f a) where
#ifdef __GLASGOW_HASKELL__
readPrec :: ReadPrec (Coyoneda f a)
readPrec = ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a))
-> ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a)
forall a b. (a -> b) -> a -> b
$ Int -> ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a)
forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 (ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a))
-> ReadPrec (Coyoneda f a) -> ReadPrec (Coyoneda f a)
forall a b. (a -> b) -> a -> b
$ do
Ident String
"liftCoyoneda" <- ReadPrec Lexeme
lexP
f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (f a -> Coyoneda f a) -> ReadPrec (f a) -> ReadPrec (Coyoneda f a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ReadPrec (f a) -> ReadPrec (f a)
forall a. ReadPrec a -> ReadPrec a
step ReadPrec (f a)
forall a. Read a => ReadPrec a
readPrec
{-# INLINE readPrec #-}
#else
readsPrec d = readParen (d > 10) $ \r' ->
[ (liftCoyoneda f, t)
| ("liftCoyoneda", s) <- lex r'
, (f, t) <- readsPrec 11 s
]
{-# INLINE readsPrec #-}
#endif
#if LIFTED_FUNCTOR_CLASSES
instance Eq1 f => Eq1 (Coyoneda f) where
liftEq :: forall a b.
(a -> b -> Bool) -> Coyoneda f a -> Coyoneda f b -> Bool
liftEq a -> b -> Bool
eq (Coyoneda b -> a
f f b
xs) (Coyoneda b -> b
g f b
ys) =
(b -> b -> Bool) -> f b -> f b -> Bool
forall a b. (a -> b -> Bool) -> f a -> f b -> Bool
forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq (\b
x b
y -> a -> b -> Bool
eq (b -> a
f b
x) (b -> b
g b
y)) f b
xs f b
ys
{-# INLINE liftEq #-}
#else
instance (Functor f, Eq1 f) => Eq1 (Coyoneda f) where
eq1 = eq1 `on` lowerCoyoneda
{-# INLINE eq1 #-}
#endif
#if LIFTED_FUNCTOR_CLASSES
instance Ord1 f => Ord1 (Coyoneda f) where
liftCompare :: forall a b.
(a -> b -> Ordering) -> Coyoneda f a -> Coyoneda f b -> Ordering
liftCompare a -> b -> Ordering
cmp (Coyoneda b -> a
f f b
xs) (Coyoneda b -> b
g f b
ys) =
(b -> b -> Ordering) -> f b -> f b -> Ordering
forall a b. (a -> b -> Ordering) -> f a -> f b -> Ordering
forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare (\b
x b
y -> a -> b -> Ordering
cmp (b -> a
f b
x) (b -> b
g b
y)) f b
xs f b
ys
{-# INLINE liftCompare #-}
#else
instance (Functor f, Ord1 f) => Ord1 (Coyoneda f) where
compare1 = compare1 `on` lowerCoyoneda
{-# INLINE compare1 #-}
#endif
instance ( Eq1 f, Eq a
#if !LIFTED_FUNCTOR_CLASSES
, Functor f
#endif
) => Eq (Coyoneda f a) where
== :: Coyoneda f a -> Coyoneda f a -> Bool
(==) = Coyoneda f a -> Coyoneda f a -> Bool
forall (f :: * -> *) a. (Eq1 f, Eq a) => f a -> f a -> Bool
eq1
{-# INLINE (==) #-}
instance ( Ord1 f, Ord a
#if !LIFTED_FUNCTOR_CLASSES
, Functor f
#endif
) => Ord (Coyoneda f a) where
compare :: Coyoneda f a -> Coyoneda f a -> Ordering
compare = Coyoneda f a -> Coyoneda f a -> Ordering
forall (f :: * -> *) a. (Ord1 f, Ord a) => f a -> f a -> Ordering
compare1
{-# INLINE compare #-}
instance Adjunction f g => Adjunction (Coyoneda f) (Coyoneda g) where
unit :: forall a. a -> Coyoneda g (Coyoneda f a)
unit = g (Coyoneda f a) -> Coyoneda g (Coyoneda f a)
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda (g (Coyoneda f a) -> Coyoneda g (Coyoneda f a))
-> (a -> g (Coyoneda f a)) -> a -> Coyoneda g (Coyoneda f a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (f a -> Coyoneda f a) -> a -> g (Coyoneda f a)
forall a b. (f a -> b) -> a -> g b
forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(f a -> b) -> a -> u b
leftAdjunct f a -> Coyoneda f a
forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda
{-# INLINE unit #-}
counit :: forall a. Coyoneda f (Coyoneda g a) -> a
counit = (Coyoneda g a -> g a) -> f (Coyoneda g a) -> a
forall a b. (a -> g b) -> f a -> b
forall (f :: * -> *) (u :: * -> *) a b.
Adjunction f u =>
(a -> u b) -> f a -> b
rightAdjunct Coyoneda g a -> g a
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda (f (Coyoneda g a) -> a)
-> (Coyoneda f (Coyoneda g a) -> f (Coyoneda g a))
-> Coyoneda f (Coyoneda g a)
-> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coyoneda f (Coyoneda g a) -> f (Coyoneda g a)
forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda
{-# INLINE counit #-}
liftCoyoneda :: f a -> Coyoneda f a
liftCoyoneda :: forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda = (a -> a) -> f a -> Coyoneda f a
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda a -> a
forall a. a -> a
id
{-# INLINE liftCoyoneda #-}
lowerCoyoneda :: Functor f => Coyoneda f a -> f a
lowerCoyoneda :: forall (f :: * -> *) a. Functor f => Coyoneda f a -> f a
lowerCoyoneda (Coyoneda b -> a
f f b
m) = (b -> a) -> f b -> f a
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f f b
m
{-# INLINE lowerCoyoneda #-}
lowerM :: Monad f => Coyoneda f a -> f a
lowerM :: forall (f :: * -> *) a. Monad f => Coyoneda f a -> f a
lowerM (Coyoneda b -> a
f f b
m) = (b -> a) -> f b -> f a
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM b -> a
f f b
m
{-# INLINE lowerM #-}
hoistCoyoneda :: (forall a. f a -> g a) -> (Coyoneda f b -> Coyoneda g b)
hoistCoyoneda :: forall (f :: * -> *) (g :: * -> *) b.
(forall a. f a -> g a) -> Coyoneda f b -> Coyoneda g b
hoistCoyoneda forall a. f a -> g a
f (Coyoneda b -> b
g f b
x) = (b -> b) -> g b -> Coyoneda g b
forall b a (f :: * -> *). (b -> a) -> f b -> Coyoneda f a
Coyoneda b -> b
g (f b -> g b
forall a. f a -> g a
f f b
x)
{-# INLINE hoistCoyoneda #-}