{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE Rank2Types #-}
#if __GLASGOW_HASKELL__ >= 707
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Safe #-}
#else
{-# LANGUAGE Trustworthy #-}
#endif
#include "free-common.h"
module Control.Monad.Free
( MonadFree(..)
, Free(..)
, retract
, liftF
, iter
, iterA
, iterM
, hoistFree
, foldFree
, toFreeT
, cutoff
, unfold
, unfoldM
, _Pure, _Free
) where
import Control.Applicative
import Control.Arrow ((>>>))
import Control.Monad (liftM, MonadPlus(..), (>=>))
import Control.Monad.Fix
import Control.Monad.Trans.Class
import qualified Control.Monad.Trans.Free as FreeT
import Control.Monad.Free.Class
import Control.Monad.Reader.Class
import Control.Monad.Writer.Class
import Control.Monad.State.Class
import Control.Monad.Error.Class
import Control.Monad.Cont.Class
import Data.Functor.Bind
import Data.Functor.Classes.Compat
import Data.Functor.WithIndex
import Data.Foldable
import Data.Foldable.WithIndex
import Data.Profunctor
import Data.Traversable
import Data.Traversable.WithIndex
import Data.Semigroup.Foldable
import Data.Semigroup.Traversable
import Data.Data
import Prelude hiding (foldr)
#if __GLASGOW_HASKELL__ >= 707
import GHC.Generics
#endif
data Free f a = Pure a | Free (f (Free f a))
#if __GLASGOW_HASKELL__ >= 707
deriving (Typeable, (forall x. Free f a -> Rep (Free f a) x)
-> (forall x. Rep (Free f a) x -> Free f a) -> Generic (Free f a)
forall x. Rep (Free f a) x -> Free f a
forall x. Free f a -> Rep (Free f a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (f :: * -> *) a x. Rep (Free f a) x -> Free f a
forall (f :: * -> *) a x. Free f a -> Rep (Free f a) x
$cfrom :: forall (f :: * -> *) a x. Free f a -> Rep (Free f a) x
from :: forall x. Free f a -> Rep (Free f a) x
$cto :: forall (f :: * -> *) a x. Rep (Free f a) x -> Free f a
to :: forall x. Rep (Free f a) x -> Free f a
Generic, (forall a. Free f a -> Rep1 (Free f) a)
-> (forall a. Rep1 (Free f) a -> Free f a) -> Generic1 (Free f)
forall a. Rep1 (Free f) a -> Free f a
forall a. Free f a -> Rep1 (Free f) a
forall k (f :: k -> *).
(forall (a :: k). f a -> Rep1 f a)
-> (forall (a :: k). Rep1 f a -> f a) -> Generic1 f
forall (f :: * -> *) a. Functor f => Rep1 (Free f) a -> Free f a
forall (f :: * -> *) a. Functor f => Free f a -> Rep1 (Free f) a
$cfrom1 :: forall (f :: * -> *) a. Functor f => Free f a -> Rep1 (Free f) a
from1 :: forall a. Free f a -> Rep1 (Free f) a
$cto1 :: forall (f :: * -> *) a. Functor f => Rep1 (Free f) a -> Free f a
to1 :: forall a. Rep1 (Free f) a -> Free f a
Generic1)
deriving instance (Typeable f, Data (f (Free f a)), Data a) => Data (Free f a)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance Eq1 f => Eq1 (Free f) where
liftEq :: forall a b. (a -> b -> Bool) -> Free f a -> Free f b -> Bool
liftEq a -> b -> Bool
eq = Free f a -> Free f b -> Bool
forall {f :: * -> *}. Eq1 f => Free f a -> Free f b -> Bool
go
where
go :: Free f a -> Free f b -> Bool
go (Pure a
a) (Pure b
b) = a -> b -> Bool
eq a
a b
b
go (Free f (Free f a)
fa) (Free f (Free f b)
fb) = (Free f a -> Free f b -> Bool)
-> f (Free f a) -> f (Free f b) -> Bool
forall a b. (a -> b -> Bool) -> f a -> f b -> Bool
forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq Free f a -> Free f b -> Bool
go f (Free f a)
fa f (Free f b)
fb
go Free f a
_ Free f b
_ = Bool
False
#else
instance (Functor f, Eq1 f) => Eq1 (Free f) where
Pure a `eq1` Pure b = a == b
Free fa `eq1` Free fb = fmap Lift1 fa `eq1` fmap Lift1 fb
_ `eq1` _ = False
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Eq1 f, Eq a) => Eq (Free f a) where
#else
instance (Eq1 f, Functor f, Eq a) => Eq (Free f a) where
#endif
== :: Free f a -> Free f a -> Bool
(==) = Free f a -> Free f a -> Bool
forall (f :: * -> *) a. (Eq1 f, Eq a) => f a -> f a -> Bool
eq1
#ifdef LIFTED_FUNCTOR_CLASSES
instance Ord1 f => Ord1 (Free f) where
liftCompare :: forall a b.
(a -> b -> Ordering) -> Free f a -> Free f b -> Ordering
liftCompare a -> b -> Ordering
cmp = Free f a -> Free f b -> Ordering
forall {f :: * -> *}. Ord1 f => Free f a -> Free f b -> Ordering
go
where
go :: Free f a -> Free f b -> Ordering
go (Pure a
a) (Pure b
b) = a -> b -> Ordering
cmp a
a b
b
go (Pure a
_) (Free f (Free f b)
_) = Ordering
LT
go (Free f (Free f a)
_) (Pure b
_) = Ordering
GT
go (Free f (Free f a)
fa) (Free f (Free f b)
fb) = (Free f a -> Free f b -> Ordering)
-> f (Free f a) -> f (Free f b) -> Ordering
forall a b. (a -> b -> Ordering) -> f a -> f b -> Ordering
forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare Free f a -> Free f b -> Ordering
go f (Free f a)
fa f (Free f b)
fb
#else
instance (Functor f, Ord1 f) => Ord1 (Free f) where
Pure a `compare1` Pure b = a `compare` b
Pure _ `compare1` Free _ = LT
Free _ `compare1` Pure _ = GT
Free fa `compare1` Free fb = fmap Lift1 fa `compare1` fmap Lift1 fb
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Ord1 f, Ord a) => Ord (Free f a) where
#else
instance (Ord1 f, Functor f, Ord a) => Ord (Free f a) where
#endif
compare :: Free f a -> Free f a -> Ordering
compare = Free f a -> Free f a -> Ordering
forall (f :: * -> *) a. (Ord1 f, Ord a) => f a -> f a -> Ordering
compare1
#ifdef LIFTED_FUNCTOR_CLASSES
instance Show1 f => Show1 (Free f) where
liftShowsPrec :: forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Free f a -> ShowS
liftShowsPrec Int -> a -> ShowS
sp [a] -> ShowS
sl = Int -> Free f a -> ShowS
forall {f :: * -> *}. Show1 f => Int -> Free f a -> ShowS
go
where
go :: Int -> Free f a -> ShowS
go Int
d (Pure a
a) = (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
showsUnaryWith Int -> a -> ShowS
sp String
"Pure" Int
d a
a
go Int
d (Free f (Free f a)
fa) = (Int -> f (Free f a) -> ShowS)
-> String -> Int -> f (Free f a) -> ShowS
forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
showsUnaryWith ((Int -> Free f a -> ShowS)
-> ([Free f a] -> ShowS) -> Int -> f (Free f a) -> ShowS
forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
liftShowsPrec Int -> Free f a -> ShowS
go ((Int -> a -> ShowS) -> ([a] -> ShowS) -> [Free f a] -> ShowS
forall a.
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [Free f a] -> ShowS
forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> ShowS) -> ([a] -> ShowS) -> [f a] -> ShowS
liftShowList Int -> a -> ShowS
sp [a] -> ShowS
sl)) String
"Free" Int
d f (Free f a)
fa
#else
instance (Functor f, Show1 f) => Show1 (Free f) where
showsPrec1 d (Pure a) = showParen (d > 10) $
showString "Pure " . showsPrec 11 a
showsPrec1 d (Free m) = showParen (d > 10) $
showString "Free " . showsPrec1 11 (fmap Lift1 m)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Show1 f, Show a) => Show (Free f a) where
#else
instance (Show1 f, Functor f, Show a) => Show (Free f a) where
#endif
showsPrec :: Int -> Free f a -> ShowS
showsPrec = Int -> Free f a -> ShowS
forall (f :: * -> *) a. (Show1 f, Show a) => Int -> f a -> ShowS
showsPrec1
#ifdef LIFTED_FUNCTOR_CLASSES
instance Read1 f => Read1 (Free f) where
liftReadsPrec :: forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Free f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl = Int -> ReadS (Free f a)
go
where
go :: Int -> ReadS (Free f a)
go = (String -> ReadS (Free f a)) -> Int -> ReadS (Free f a)
forall a. (String -> ReadS a) -> Int -> ReadS a
readsData ((String -> ReadS (Free f a)) -> Int -> ReadS (Free f a))
-> (String -> ReadS (Free f a)) -> Int -> ReadS (Free f a)
forall a b. (a -> b) -> a -> b
$
(Int -> ReadS a)
-> String -> (a -> Free f a) -> String -> ReadS (Free f a)
forall a t.
(Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
readsUnaryWith Int -> ReadS a
rp String
"Pure" a -> Free f a
forall (f :: * -> *) a. a -> Free f a
Pure (String -> ReadS (Free f a))
-> (String -> ReadS (Free f a)) -> String -> ReadS (Free f a)
forall a. Monoid a => a -> a -> a
`mappend`
(Int -> ReadS (f (Free f a)))
-> String
-> (f (Free f a) -> Free f a)
-> String
-> ReadS (Free f a)
forall a t.
(Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
readsUnaryWith ((Int -> ReadS (Free f a))
-> ReadS [Free f a] -> Int -> ReadS (f (Free f a))
forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS (Free f a)
go ((Int -> ReadS a) -> ReadS [a] -> ReadS [Free f a]
forall a. (Int -> ReadS a) -> ReadS [a] -> ReadS [Free f a]
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
liftReadList Int -> ReadS a
rp ReadS [a]
rl)) String
"Free" f (Free f a) -> Free f a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free
#else
instance (Functor f, Read1 f) => Read1 (Free f) where
readsPrec1 d r = readParen (d > 10)
(\r' -> [ (Pure m, t)
| ("Pure", s) <- lex r'
, (m, t) <- readsPrec 11 s]) r
++ readParen (d > 10)
(\r' -> [ (Free (fmap lower1 m), t)
| ("Free", s) <- lex r'
, (m, t) <- readsPrec1 11 s]) r
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Read1 f, Read a) => Read (Free f a) where
#else
instance (Read1 f, Functor f, Read a) => Read (Free f a) where
#endif
readsPrec :: Int -> ReadS (Free f a)
readsPrec = Int -> ReadS (Free f a)
forall (f :: * -> *) a. (Read1 f, Read a) => Int -> ReadS (f a)
readsPrec1
instance Functor f => Functor (Free f) where
fmap :: forall a b. (a -> b) -> Free f a -> Free f b
fmap a -> b
f = Free f a -> Free f b
forall {f :: * -> *}. Functor f => Free f a -> Free f b
go where
go :: Free f a -> Free f b
go (Pure a
a) = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (a -> b
f a
a)
go (Free f (Free f a)
fa) = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (Free f a -> Free f b
go (Free f a -> Free f b) -> f (Free f a) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
fa)
{-# INLINE fmap #-}
instance Functor f => Apply (Free f) where
Pure a -> b
a <.> :: forall a b. Free f (a -> b) -> Free f a -> Free f b
<.> Pure a
b = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (a -> b
a a
b)
Pure a -> b
a <.> Free f (Free f a)
fb = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (Free f b) -> Free f b
forall a b. (a -> b) -> a -> b
$ (a -> b) -> Free f a -> Free f b
forall a b. (a -> b) -> Free f a -> Free f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
a (Free f a -> Free f b) -> f (Free f a) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
fb
Free f (Free f (a -> b))
fa <.> Free f a
b = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (Free f b) -> Free f b
forall a b. (a -> b) -> a -> b
$ (Free f (a -> b) -> Free f a -> Free f b
forall a b. Free f (a -> b) -> Free f a -> Free f b
forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> Free f a
b) (Free f (a -> b) -> Free f b)
-> f (Free f (a -> b)) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f (a -> b))
fa
instance Functor f => Applicative (Free f) where
pure :: forall a. a -> Free f a
pure = a -> Free f a
forall (f :: * -> *) a. a -> Free f a
Pure
{-# INLINE pure #-}
Pure a -> b
a <*> :: forall a b. Free f (a -> b) -> Free f a -> Free f b
<*> Pure a
b = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (b -> Free f b) -> b -> Free f b
forall a b. (a -> b) -> a -> b
$ a -> b
a a
b
Pure a -> b
a <*> Free f (Free f a)
mb = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (Free f b) -> Free f b
forall a b. (a -> b) -> a -> b
$ (a -> b) -> Free f a -> Free f b
forall a b. (a -> b) -> Free f a -> Free f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
a (Free f a -> Free f b) -> f (Free f a) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
mb
Free f (Free f (a -> b))
ma <*> Free f a
b = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (Free f b) -> Free f b
forall a b. (a -> b) -> a -> b
$ (Free f (a -> b) -> Free f a -> Free f b
forall a b. Free f (a -> b) -> Free f a -> Free f b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Free f a
b) (Free f (a -> b) -> Free f b)
-> f (Free f (a -> b)) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f (a -> b))
ma
instance Functor f => Bind (Free f) where
Pure a
a >>- :: forall a b. Free f a -> (a -> Free f b) -> Free f b
>>- a -> Free f b
f = a -> Free f b
f a
a
Free f (Free f a)
m >>- a -> Free f b
f = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free ((Free f a -> (a -> Free f b) -> Free f b
forall a b. Free f a -> (a -> Free f b) -> Free f b
forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- a -> Free f b
f) (Free f a -> Free f b) -> f (Free f a) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
m)
instance Functor f => Monad (Free f) where
return :: forall a. a -> Free f a
return = a -> Free f a
forall a. a -> Free f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
{-# INLINE return #-}
Pure a
a >>= :: forall a b. Free f a -> (a -> Free f b) -> Free f b
>>= a -> Free f b
f = a -> Free f b
f a
a
Free f (Free f a)
m >>= a -> Free f b
f = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free ((Free f a -> (a -> Free f b) -> Free f b
forall a b. Free f a -> (a -> Free f b) -> Free f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> Free f b
f) (Free f a -> Free f b) -> f (Free f a) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
m)
instance Functor f => MonadFix (Free f) where
mfix :: forall a. (a -> Free f a) -> Free f a
mfix a -> Free f a
f = Free f a
a where a :: Free f a
a = a -> Free f a
f (Free f a -> a
forall {f :: * -> *} {a}. Free f a -> a
impure Free f a
a); impure :: Free f a -> a
impure (Pure a
x) = a
x; impure (Free f (Free f a)
_) = String -> a
forall a. HasCallStack => String -> a
error String
"mfix (Free f): Free"
instance Alternative v => Alternative (Free v) where
empty :: forall a. Free v a
empty = v (Free v a) -> Free v a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free v (Free v a)
forall a. v a
forall (f :: * -> *) a. Alternative f => f a
empty
{-# INLINE empty #-}
Free v a
a <|> :: forall a. Free v a -> Free v a -> Free v a
<|> Free v a
b = v (Free v a) -> Free v a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (Free v a -> v (Free v a)
forall a. a -> v a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Free v a
a v (Free v a) -> v (Free v a) -> v (Free v a)
forall a. v a -> v a -> v a
forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Free v a -> v (Free v a)
forall a. a -> v a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Free v a
b)
{-# INLINE (<|>) #-}
instance (Functor v, MonadPlus v) => MonadPlus (Free v) where
mzero :: forall a. Free v a
mzero = v (Free v a) -> Free v a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free v (Free v a)
forall a. v a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
{-# INLINE mzero #-}
Free v a
a mplus :: forall a. Free v a -> Free v a -> Free v a
`mplus` Free v a
b = v (Free v a) -> Free v a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (Free v a -> v (Free v a)
forall a. a -> v a
forall (m :: * -> *) a. Monad m => a -> m a
return Free v a
a v (Free v a) -> v (Free v a) -> v (Free v a)
forall a. v a -> v a -> v a
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` Free v a -> v (Free v a)
forall a. a -> v a
forall (m :: * -> *) a. Monad m => a -> m a
return Free v a
b)
{-# INLINE mplus #-}
instance MonadTrans Free where
lift :: forall (m :: * -> *) a. Monad m => m a -> Free m a
lift = m (Free m a) -> Free m a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (m (Free m a) -> Free m a)
-> (m a -> m (Free m a)) -> m a -> Free m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Free m a) -> m a -> m (Free m a)
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM a -> Free m a
forall (f :: * -> *) a. a -> Free f a
Pure
{-# INLINE lift #-}
instance Foldable f => Foldable (Free f) where
foldMap :: forall m a. Monoid m => (a -> m) -> Free f a -> m
foldMap a -> m
f = Free f a -> m
forall {t :: * -> *}. Foldable t => Free t a -> m
go where
go :: Free t a -> m
go (Pure a
a) = a -> m
f a
a
go (Free t (Free t a)
fa) = (Free t a -> m) -> t (Free t a) -> m
forall m a. Monoid m => (a -> m) -> t a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap Free t a -> m
go t (Free t a)
fa
{-# INLINE foldMap #-}
foldr :: forall a b. (a -> b -> b) -> b -> Free f a -> b
foldr a -> b -> b
f = b -> Free f a -> b
forall {t :: * -> *}. Foldable t => b -> Free t a -> b
go where
go :: b -> Free t a -> b
go b
r Free t a
free =
case Free t a
free of
Pure a
a -> a -> b -> b
f a
a b
r
Free t (Free t a)
fa -> (Free t a -> b -> b) -> b -> t (Free t a) -> b
forall a b. (a -> b -> b) -> b -> t a -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr ((b -> Free t a -> b) -> Free t a -> b -> b
forall a b c. (a -> b -> c) -> b -> a -> c
flip b -> Free t a -> b
go) b
r t (Free t a)
fa
{-# INLINE foldr #-}
#if MIN_VERSION_base(4,6,0)
foldl' :: forall b a. (b -> a -> b) -> b -> Free f a -> b
foldl' b -> a -> b
f = b -> Free f a -> b
forall {t :: * -> *}. Foldable t => b -> Free t a -> b
go where
go :: b -> Free t a -> b
go b
r Free t a
free =
case Free t a
free of
Pure a
a -> b -> a -> b
f b
r a
a
Free t (Free t a)
fa -> (b -> Free t a -> b) -> b -> t (Free t a) -> b
forall b a. (b -> a -> b) -> b -> t a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' b -> Free t a -> b
go b
r t (Free t a)
fa
{-# INLINE foldl' #-}
#endif
instance Foldable1 f => Foldable1 (Free f) where
foldMap1 :: forall m a. Semigroup m => (a -> m) -> Free f a -> m
foldMap1 a -> m
f = Free f a -> m
forall {t :: * -> *}. Foldable1 t => Free t a -> m
go where
go :: Free t a -> m
go (Pure a
a) = a -> m
f a
a
go (Free t (Free t a)
fa) = (Free t a -> m) -> t (Free t a) -> m
forall m a. Semigroup m => (a -> m) -> t a -> m
forall (t :: * -> *) m a.
(Foldable1 t, Semigroup m) =>
(a -> m) -> t a -> m
foldMap1 Free t a -> m
go t (Free t a)
fa
{-# INLINE foldMap1 #-}
instance Traversable f => Traversable (Free f) where
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> Free f a -> f (Free f b)
traverse a -> f b
f = Free f a -> f (Free f b)
forall {f :: * -> *}. Traversable f => Free f a -> f (Free f b)
go where
go :: Free f a -> f (Free f b)
go (Pure a
a) = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (b -> Free f b) -> f b -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
go (Free f (Free f a)
fa) = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (f (Free f b)) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Free f a -> f (Free f b)) -> f (Free f a) -> f (f (Free f b))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse Free f a -> f (Free f b)
go f (Free f a)
fa
{-# INLINE traverse #-}
instance Traversable1 f => Traversable1 (Free f) where
traverse1 :: forall (f :: * -> *) a b.
Apply f =>
(a -> f b) -> Free f a -> f (Free f b)
traverse1 a -> f b
f = Free f a -> f (Free f b)
forall {f :: * -> *}. Traversable1 f => Free f a -> f (Free f b)
go where
go :: Free f a -> f (Free f b)
go (Pure a
a) = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (b -> Free f b) -> f b -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
go (Free f (Free f a)
fa) = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (f (Free f b)) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Free f a -> f (Free f b)) -> f (Free f a) -> f (f (Free f b))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable1 t, Apply f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b. Apply f => (a -> f b) -> f a -> f (f b)
traverse1 Free f a -> f (Free f b)
go f (Free f a)
fa
{-# INLINE traverse1 #-}
instance FunctorWithIndex i f => FunctorWithIndex [i] (Free f) where
imap :: forall a b. ([i] -> a -> b) -> Free f a -> Free f b
imap [i] -> a -> b
f (Pure a
a) = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (b -> Free f b) -> b -> Free f b
forall a b. (a -> b) -> a -> b
$ [i] -> a -> b
f [] a
a
imap [i] -> a -> b
f (Free f (Free f a)
s) = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (Free f b) -> Free f b
forall a b. (a -> b) -> a -> b
$ (i -> Free f a -> Free f b) -> f (Free f a) -> f (Free f b)
forall a b. (i -> a -> b) -> f a -> f b
forall i (f :: * -> *) a b.
FunctorWithIndex i f =>
(i -> a -> b) -> f a -> f b
imap (\i
i -> ([i] -> a -> b) -> Free f a -> Free f b
forall a b. ([i] -> a -> b) -> Free f a -> Free f b
forall i (f :: * -> *) a b.
FunctorWithIndex i f =>
(i -> a -> b) -> f a -> f b
imap ([i] -> a -> b
f ([i] -> a -> b) -> ([i] -> [i]) -> [i] -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (:) i
i)) f (Free f a)
s
{-# INLINE imap #-}
instance FoldableWithIndex i f => FoldableWithIndex [i] (Free f) where
ifoldMap :: forall m a. Monoid m => ([i] -> a -> m) -> Free f a -> m
ifoldMap [i] -> a -> m
f (Pure a
a) = [i] -> a -> m
f [] a
a
ifoldMap [i] -> a -> m
f (Free f (Free f a)
s) = (i -> Free f a -> m) -> f (Free f a) -> m
forall m a. Monoid m => (i -> a -> m) -> f a -> m
forall i (f :: * -> *) m a.
(FoldableWithIndex i f, Monoid m) =>
(i -> a -> m) -> f a -> m
ifoldMap (\i
i -> ([i] -> a -> m) -> Free f a -> m
forall m a. Monoid m => ([i] -> a -> m) -> Free f a -> m
forall i (f :: * -> *) m a.
(FoldableWithIndex i f, Monoid m) =>
(i -> a -> m) -> f a -> m
ifoldMap ([i] -> a -> m
f ([i] -> a -> m) -> ([i] -> [i]) -> [i] -> a -> m
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (:) i
i)) f (Free f a)
s
{-# INLINE ifoldMap #-}
instance TraversableWithIndex i f => TraversableWithIndex [i] (Free f) where
itraverse :: forall (f :: * -> *) a b.
Applicative f =>
([i] -> a -> f b) -> Free f a -> f (Free f b)
itraverse [i] -> a -> f b
f (Pure a
a) = b -> Free f b
forall (f :: * -> *) a. a -> Free f a
Pure (b -> Free f b) -> f b -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [i] -> a -> f b
f [] a
a
itraverse [i] -> a -> f b
f (Free f (Free f a)
s) = f (Free f b) -> Free f b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f b) -> Free f b) -> f (f (Free f b)) -> f (Free f b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (i -> Free f a -> f (Free f b)) -> f (Free f a) -> f (f (Free f b))
forall i (t :: * -> *) (f :: * -> *) a b.
(TraversableWithIndex i t, Applicative f) =>
(i -> a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(i -> a -> f b) -> f a -> f (f b)
itraverse (\i
i -> ([i] -> a -> f b) -> Free f a -> f (Free f b)
forall i (t :: * -> *) (f :: * -> *) a b.
(TraversableWithIndex i t, Applicative f) =>
(i -> a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
([i] -> a -> f b) -> Free f a -> f (Free f b)
itraverse ([i] -> a -> f b
f ([i] -> a -> f b) -> ([i] -> [i]) -> [i] -> a -> f b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (:) i
i)) f (Free f a)
s
{-# INLINE itraverse #-}
instance (Functor m, MonadWriter e m) => MonadWriter e (Free m) where
tell :: e -> Free m ()
tell = m () -> Free m ()
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m () -> Free m ()) -> (e -> m ()) -> e -> Free m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. e -> m ()
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell
{-# INLINE tell #-}
listen :: forall a. Free m a -> Free m (a, e)
listen = m (a, e) -> Free m (a, e)
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m (a, e) -> Free m (a, e))
-> (Free m a -> m (a, e)) -> Free m a -> Free m (a, e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m a -> m (a, e)
forall a. m a -> m (a, e)
forall w (m :: * -> *) a. MonadWriter w m => m a -> m (a, w)
listen (m a -> m (a, e)) -> (Free m a -> m a) -> Free m a -> m (a, e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Free m a -> m a
forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
{-# INLINE listen #-}
pass :: forall a. Free m (a, e -> e) -> Free m a
pass = m a -> Free m a
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m a -> Free m a)
-> (Free m (a, e -> e) -> m a) -> Free m (a, e -> e) -> Free m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m (a, e -> e) -> m a
forall a. m (a, e -> e) -> m a
forall w (m :: * -> *) a. MonadWriter w m => m (a, w -> w) -> m a
pass (m (a, e -> e) -> m a)
-> (Free m (a, e -> e) -> m (a, e -> e))
-> Free m (a, e -> e)
-> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Free m (a, e -> e) -> m (a, e -> e)
forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
{-# INLINE pass #-}
instance (Functor m, MonadReader e m) => MonadReader e (Free m) where
ask :: Free m e
ask = m e -> Free m e
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift m e
forall r (m :: * -> *). MonadReader r m => m r
ask
{-# INLINE ask #-}
local :: forall a. (e -> e) -> Free m a -> Free m a
local e -> e
f = m a -> Free m a
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m a -> Free m a) -> (Free m a -> m a) -> Free m a -> Free m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (e -> e) -> m a -> m a
forall a. (e -> e) -> m a -> m a
forall r (m :: * -> *) a. MonadReader r m => (r -> r) -> m a -> m a
local e -> e
f (m a -> m a) -> (Free m a -> m a) -> Free m a -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Free m a -> m a
forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
{-# INLINE local #-}
instance (Functor m, MonadState s m) => MonadState s (Free m) where
get :: Free m s
get = m s -> Free m s
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift m s
forall s (m :: * -> *). MonadState s m => m s
get
{-# INLINE get #-}
put :: s -> Free m ()
put s
s = m () -> Free m ()
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (s -> m ()
forall s (m :: * -> *). MonadState s m => s -> m ()
put s
s)
{-# INLINE put #-}
instance (Functor m, MonadError e m) => MonadError e (Free m) where
throwError :: forall a. e -> Free m a
throwError = m a -> Free m a
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m a -> Free m a) -> (e -> m a) -> e -> Free m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. e -> m a
forall a. e -> m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError
{-# INLINE throwError #-}
catchError :: forall a. Free m a -> (e -> Free m a) -> Free m a
catchError Free m a
as e -> Free m a
f = m a -> Free m a
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m a -> (e -> m a) -> m a
forall a. m a -> (e -> m a) -> m a
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
catchError (Free m a -> m a
forall (f :: * -> *) a. Monad f => Free f a -> f a
retract Free m a
as) (Free m a -> m a
forall (f :: * -> *) a. Monad f => Free f a -> f a
retract (Free m a -> m a) -> (e -> Free m a) -> e -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. e -> Free m a
f))
{-# INLINE catchError #-}
instance (Functor m, MonadCont m) => MonadCont (Free m) where
callCC :: forall a b. ((a -> Free m b) -> Free m a) -> Free m a
callCC (a -> Free m b) -> Free m a
f = m a -> Free m a
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (((a -> m b) -> m a) -> m a
forall a b. ((a -> m b) -> m a) -> m a
forall (m :: * -> *) a b. MonadCont m => ((a -> m b) -> m a) -> m a
callCC (Free m a -> m a
forall (f :: * -> *) a. Monad f => Free f a -> f a
retract (Free m a -> m a) -> ((a -> m b) -> Free m a) -> (a -> m b) -> m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Free m b) -> Free m a
f ((a -> Free m b) -> Free m a)
-> ((a -> m b) -> a -> Free m b) -> (a -> m b) -> Free m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (m b -> Free m b) -> (a -> m b) -> a -> Free m b
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM m b -> Free m b
forall (m :: * -> *) a. Monad m => m a -> Free m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift))
{-# INLINE callCC #-}
instance Functor f => MonadFree f (Free f) where
wrap :: forall a. f (Free f a) -> Free f a
wrap = f (Free f a) -> Free f a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free
{-# INLINE wrap #-}
retract :: Monad f => Free f a -> f a
retract :: forall (f :: * -> *) a. Monad f => Free f a -> f a
retract (Pure a
a) = a -> f a
forall a. a -> f a
forall (m :: * -> *) a. Monad m => a -> m a
return a
a
retract (Free f (Free f a)
as) = f (Free f a)
as f (Free f a) -> (Free f a -> f a) -> f a
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Free f a -> f a
forall (f :: * -> *) a. Monad f => Free f a -> f a
retract
iter :: Functor f => (f a -> a) -> Free f a -> a
iter :: forall (f :: * -> *) a. Functor f => (f a -> a) -> Free f a -> a
iter f a -> a
_ (Pure a
a) = a
a
iter f a -> a
phi (Free f (Free f a)
m) = f a -> a
phi ((f a -> a) -> Free f a -> a
forall (f :: * -> *) a. Functor f => (f a -> a) -> Free f a -> a
iter f a -> a
phi (Free f a -> a) -> f (Free f a) -> f a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
m)
iterA :: (Applicative p, Functor f) => (f (p a) -> p a) -> Free f a -> p a
iterA :: forall (p :: * -> *) (f :: * -> *) a.
(Applicative p, Functor f) =>
(f (p a) -> p a) -> Free f a -> p a
iterA f (p a) -> p a
_ (Pure a
x) = a -> p a
forall a. a -> p a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
x
iterA f (p a) -> p a
phi (Free f (Free f a)
f) = f (p a) -> p a
phi ((f (p a) -> p a) -> Free f a -> p a
forall (p :: * -> *) (f :: * -> *) a.
(Applicative p, Functor f) =>
(f (p a) -> p a) -> Free f a -> p a
iterA f (p a) -> p a
phi (Free f a -> p a) -> f (Free f a) -> f (p a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
f)
iterM :: (Monad m, Functor f) => (f (m a) -> m a) -> Free f a -> m a
iterM :: forall (m :: * -> *) (f :: * -> *) a.
(Monad m, Functor f) =>
(f (m a) -> m a) -> Free f a -> m a
iterM f (m a) -> m a
_ (Pure a
x) = a -> m a
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
x
iterM f (m a) -> m a
phi (Free f (Free f a)
f) = f (m a) -> m a
phi ((f (m a) -> m a) -> Free f a -> m a
forall (m :: * -> *) (f :: * -> *) a.
(Monad m, Functor f) =>
(f (m a) -> m a) -> Free f a -> m a
iterM f (m a) -> m a
phi (Free f a -> m a) -> f (Free f a) -> f (m a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f a)
f)
hoistFree :: Functor g => (forall a. f a -> g a) -> Free f b -> Free g b
hoistFree :: forall (g :: * -> *) (f :: * -> *) b.
Functor g =>
(forall a. f a -> g a) -> Free f b -> Free g b
hoistFree forall a. f a -> g a
_ (Pure b
a) = b -> Free g b
forall (f :: * -> *) a. a -> Free f a
Pure b
a
hoistFree forall a. f a -> g a
f (Free f (Free f b)
as) = g (Free g b) -> Free g b
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free ((forall a. f a -> g a) -> Free f b -> Free g b
forall (g :: * -> *) (f :: * -> *) b.
Functor g =>
(forall a. f a -> g a) -> Free f b -> Free g b
hoistFree f a -> g a
forall a. f a -> g a
f (Free f b -> Free g b) -> g (Free f b) -> g (Free g b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Free f b) -> g (Free f b)
forall a. f a -> g a
f f (Free f b)
as)
foldFree :: Monad m => (forall x . f x -> m x) -> Free f a -> m a
foldFree :: forall (m :: * -> *) (f :: * -> *) a.
Monad m =>
(forall x. f x -> m x) -> Free f a -> m a
foldFree forall x. f x -> m x
_ (Pure a
a) = a -> m a
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
a
foldFree forall x. f x -> m x
f (Free f (Free f a)
as) = f (Free f a) -> m (Free f a)
forall x. f x -> m x
f f (Free f a)
as m (Free f a) -> (Free f a -> m a) -> m a
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (forall x. f x -> m x) -> Free f a -> m a
forall (m :: * -> *) (f :: * -> *) a.
Monad m =>
(forall x. f x -> m x) -> Free f a -> m a
foldFree f x -> m x
forall x. f x -> m x
f
toFreeT :: (Functor f, Monad m) => Free f a -> FreeT.FreeT f m a
toFreeT :: forall (f :: * -> *) (m :: * -> *) a.
(Functor f, Monad m) =>
Free f a -> FreeT f m a
toFreeT (Pure a
a) = m (FreeF f a (FreeT f m a)) -> FreeT f m a
forall (f :: * -> *) (m :: * -> *) a.
m (FreeF f a (FreeT f m a)) -> FreeT f m a
FreeT.FreeT (FreeF f a (FreeT f m a) -> m (FreeF f a (FreeT f m a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (a -> FreeF f a (FreeT f m a)
forall (f :: * -> *) a b. a -> FreeF f a b
FreeT.Pure a
a))
toFreeT (Free f (Free f a)
f) = m (FreeF f a (FreeT f m a)) -> FreeT f m a
forall (f :: * -> *) (m :: * -> *) a.
m (FreeF f a (FreeT f m a)) -> FreeT f m a
FreeT.FreeT (FreeF f a (FreeT f m a) -> m (FreeF f a (FreeT f m a))
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return (f (FreeT f m a) -> FreeF f a (FreeT f m a)
forall (f :: * -> *) a b. f b -> FreeF f a b
FreeT.Free ((Free f a -> FreeT f m a) -> f (Free f a) -> f (FreeT f m a)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Free f a -> FreeT f m a
forall (f :: * -> *) (m :: * -> *) a.
(Functor f, Monad m) =>
Free f a -> FreeT f m a
toFreeT f (Free f a)
f)))
cutoff :: (Functor f) => Integer -> Free f a -> Free f (Maybe a)
cutoff :: forall (f :: * -> *) a.
Functor f =>
Integer -> Free f a -> Free f (Maybe a)
cutoff Integer
n Free f a
_ | Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
0 = Maybe a -> Free f (Maybe a)
forall a. a -> Free f a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe a
forall a. Maybe a
Nothing
cutoff Integer
n (Free f (Free f a)
f) = f (Free f (Maybe a)) -> Free f (Maybe a)
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f (Maybe a)) -> Free f (Maybe a))
-> f (Free f (Maybe a)) -> Free f (Maybe a)
forall a b. (a -> b) -> a -> b
$ (Free f a -> Free f (Maybe a))
-> f (Free f a) -> f (Free f (Maybe a))
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Integer -> Free f a -> Free f (Maybe a)
forall (f :: * -> *) a.
Functor f =>
Integer -> Free f a -> Free f (Maybe a)
cutoff (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)) f (Free f a)
f
cutoff Integer
_ Free f a
m = a -> Maybe a
forall a. a -> Maybe a
Just (a -> Maybe a) -> Free f a -> Free f (Maybe a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Free f a
m
unfold :: Functor f => (b -> Either a (f b)) -> b -> Free f a
unfold :: forall (f :: * -> *) b a.
Functor f =>
(b -> Either a (f b)) -> b -> Free f a
unfold b -> Either a (f b)
f = b -> Either a (f b)
f (b -> Either a (f b))
-> (Either a (f b) -> Free f a) -> b -> Free f a
forall {k} (cat :: k -> k -> *) (a :: k) (b :: k) (c :: k).
Category cat =>
cat a b -> cat b c -> cat a c
>>> (a -> Free f a) -> (f b -> Free f a) -> Either a (f b) -> Free f a
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either a -> Free f a
forall (f :: * -> *) a. a -> Free f a
Pure (f (Free f a) -> Free f a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (f (Free f a) -> Free f a)
-> (f b -> f (Free f a)) -> f b -> Free f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> Free f a) -> f b -> f (Free f a)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((b -> Either a (f b)) -> b -> Free f a
forall (f :: * -> *) b a.
Functor f =>
(b -> Either a (f b)) -> b -> Free f a
unfold b -> Either a (f b)
f))
unfoldM :: (Traversable f, Applicative m, Monad m) => (b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM :: forall (f :: * -> *) (m :: * -> *) b a.
(Traversable f, Applicative m, Monad m) =>
(b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM b -> m (Either a (f b))
f = b -> m (Either a (f b))
f (b -> m (Either a (f b)))
-> (Either a (f b) -> m (Free f a)) -> b -> m (Free f a)
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=> (a -> m (Free f a))
-> (f b -> m (Free f a)) -> Either a (f b) -> m (Free f a)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (Free f a -> m (Free f a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Free f a -> m (Free f a)) -> (a -> Free f a) -> a -> m (Free f a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Free f a
forall a. a -> Free f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure) ((f (Free f a) -> Free f a) -> m (f (Free f a)) -> m (Free f a)
forall a b. (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (Free f a) -> Free f a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free (m (f (Free f a)) -> m (Free f a))
-> (f b -> m (f (Free f a))) -> f b -> m (Free f a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (b -> m (Free f a)) -> f b -> m (f (Free f a))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse ((b -> m (Either a (f b))) -> b -> m (Free f a)
forall (f :: * -> *) (m :: * -> *) b a.
(Traversable f, Applicative m, Monad m) =>
(b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM b -> m (Either a (f b))
f))
_Pure :: forall f m a p. (Choice p, Applicative m)
=> p a (m a) -> p (Free f a) (m (Free f a))
_Pure :: forall (f :: * -> *) (m :: * -> *) a (p :: * -> * -> *).
(Choice p, Applicative m) =>
p a (m a) -> p (Free f a) (m (Free f a))
_Pure = (Free f a -> Either (Free f a) a)
-> (Either (Free f a) (m a) -> m (Free f a))
-> p (Either (Free f a) a) (Either (Free f a) (m a))
-> p (Free f a) (m (Free f a))
forall a b c d. (a -> b) -> (c -> d) -> p b c -> p a d
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap Free f a -> Either (Free f a) a
forall {f :: * -> *} {b}. Free f b -> Either (Free f b) b
impure ((Free f a -> m (Free f a))
-> (m a -> m (Free f a)) -> Either (Free f a) (m a) -> m (Free f a)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either Free f a -> m (Free f a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ((a -> Free f a) -> m a -> m (Free f a)
forall a b. (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> Free f a
forall (f :: * -> *) a. a -> Free f a
Pure)) (p (Either (Free f a) a) (Either (Free f a) (m a))
-> p (Free f a) (m (Free f a)))
-> (p a (m a) -> p (Either (Free f a) a) (Either (Free f a) (m a)))
-> p a (m a)
-> p (Free f a) (m (Free f a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p a (m a) -> p (Either (Free f a) a) (Either (Free f a) (m a))
forall a b c. p a b -> p (Either c a) (Either c b)
forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either c a) (Either c b)
right'
where
impure :: Free f b -> Either (Free f b) b
impure (Pure b
x) = b -> Either (Free f b) b
forall a b. b -> Either a b
Right b
x
impure Free f b
x = Free f b -> Either (Free f b) b
forall a b. a -> Either a b
Left Free f b
x
{-# INLINE impure #-}
{-# INLINE _Pure #-}
_Free :: forall f g m a p. (Choice p, Applicative m)
=> p (f (Free f a)) (m (g (Free g a))) -> p (Free f a) (m (Free g a))
_Free :: forall (f :: * -> *) (g :: * -> *) (m :: * -> *) a
(p :: * -> * -> *).
(Choice p, Applicative m) =>
p (f (Free f a)) (m (g (Free g a))) -> p (Free f a) (m (Free g a))
_Free = (Free f a -> Either (Free g a) (f (Free f a)))
-> (Either (Free g a) (m (g (Free g a))) -> m (Free g a))
-> p (Either (Free g a) (f (Free f a)))
(Either (Free g a) (m (g (Free g a))))
-> p (Free f a) (m (Free g a))
forall a b c d. (a -> b) -> (c -> d) -> p b c -> p a d
forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap Free f a -> Either (Free g a) (f (Free f a))
forall {f :: * -> *} {a} {f :: * -> *}.
Free f a -> Either (Free f a) (f (Free f a))
unfree ((Free g a -> m (Free g a))
-> (m (g (Free g a)) -> m (Free g a))
-> Either (Free g a) (m (g (Free g a)))
-> m (Free g a)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either Free g a -> m (Free g a)
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure ((g (Free g a) -> Free g a) -> m (g (Free g a)) -> m (Free g a)
forall a b. (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap g (Free g a) -> Free g a
forall (f :: * -> *) a. f (Free f a) -> Free f a
Free)) (p (Either (Free g a) (f (Free f a)))
(Either (Free g a) (m (g (Free g a))))
-> p (Free f a) (m (Free g a)))
-> (p (f (Free f a)) (m (g (Free g a)))
-> p (Either (Free g a) (f (Free f a)))
(Either (Free g a) (m (g (Free g a)))))
-> p (f (Free f a)) (m (g (Free g a)))
-> p (Free f a) (m (Free g a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p (f (Free f a)) (m (g (Free g a)))
-> p (Either (Free g a) (f (Free f a)))
(Either (Free g a) (m (g (Free g a))))
forall a b c. p a b -> p (Either c a) (Either c b)
forall (p :: * -> * -> *) a b c.
Choice p =>
p a b -> p (Either c a) (Either c b)
right'
where
unfree :: Free f a -> Either (Free f a) (f (Free f a))
unfree (Free f (Free f a)
x) = f (Free f a) -> Either (Free f a) (f (Free f a))
forall a b. b -> Either a b
Right f (Free f a)
x
unfree (Pure a
x) = Free f a -> Either (Free f a) (f (Free f a))
forall a b. a -> Either a b
Left (a -> Free f a
forall (f :: * -> *) a. a -> Free f a
Pure a
x)
{-# INLINE unfree #-}
{-# INLINE _Free #-}
#if __GLASGOW_HASKELL__ < 707
instance Typeable1 f => Typeable1 (Free f) where
typeOf1 t = mkTyConApp freeTyCon [typeOf1 (f t)] where
f :: Free f a -> f a
f = undefined
freeTyCon :: TyCon
#if __GLASGOW_HASKELL__ < 704
freeTyCon = mkTyCon "Control.Monad.Free.Free"
#else
freeTyCon = mkTyCon3 "free" "Control.Monad.Free" "Free"
#endif
{-# NOINLINE freeTyCon #-}
instance
( Typeable1 f, Typeable a
, Data a, Data (f (Free f a))
) => Data (Free f a) where
gfoldl f z (Pure a) = z Pure `f` a
gfoldl f z (Free as) = z Free `f` as
toConstr Pure{} = pureConstr
toConstr Free{} = freeConstr
gunfold k z c = case constrIndex c of
1 -> k (z Pure)
2 -> k (z Free)
_ -> error "gunfold"
dataTypeOf _ = freeDataType
dataCast1 f = gcast1 f
pureConstr, freeConstr :: Constr
pureConstr = mkConstr freeDataType "Pure" [] Prefix
freeConstr = mkConstr freeDataType "Free" [] Prefix
{-# NOINLINE pureConstr #-}
{-# NOINLINE freeConstr #-}
freeDataType :: DataType
freeDataType = mkDataType "Control.Monad.Free.FreeF" [pureConstr, freeConstr]
{-# NOINLINE freeDataType #-}
#endif