{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
module Data.Finite
(
Finite,
packFinite, packFiniteProxy,
finite, finiteProxy,
getFinite, finites, finitesProxy,
modulo, moduloProxy,
equals, cmp,
natToFinite,
weaken, strengthen, shift, unshift,
weakenN, strengthenN, shiftN, unshiftN,
weakenProxy, strengthenProxy, shiftProxy, unshiftProxy,
add, sub, multiply,
combineSum, combineProduct,
separateSum, separateProduct,
isValidFinite
)
where
import Data.Maybe
import GHC.TypeLits
import Data.Finite.Internal
packFinite :: KnownNat n => Integer -> Maybe (Finite n)
packFinite :: forall (n :: Nat). KnownNat n => Integer -> Maybe (Finite n)
packFinite Integer
x = Maybe (Finite n)
result
where
result :: Maybe (Finite n)
result = if Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Maybe (Finite n) -> Finite n
forall a. HasCallStack => Maybe a -> a
fromJust Maybe (Finite n)
result) Bool -> Bool -> Bool
&& Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
0
then Finite n -> Maybe (Finite n)
forall a. a -> Maybe a
Just (Finite n -> Maybe (Finite n)) -> Finite n -> Maybe (Finite n)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite Integer
x
else Maybe (Finite n)
forall a. Maybe a
Nothing
packFiniteProxy :: KnownNat n => proxy n -> Integer -> Maybe (Finite n)
packFiniteProxy :: forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer -> Maybe (Finite n)
packFiniteProxy proxy n
_ = Integer -> Maybe (Finite n)
forall (n :: Nat). KnownNat n => Integer -> Maybe (Finite n)
packFinite
finiteProxy :: KnownNat n => proxy n -> Integer -> Finite n
finiteProxy :: forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer -> Finite n
finiteProxy proxy n
_ = Integer -> Finite n
forall (n :: Nat). KnownNat n => Integer -> Finite n
finite
finites :: KnownNat n => [Finite n]
finites :: forall (n :: Nat). KnownNat n => [Finite n]
finites = [Finite n]
results
where
results :: [Finite n]
results = Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite n) -> [Integer] -> [Finite n]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
`fmap` [Integer
0 .. (Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal ([Finite n] -> Finite n
forall a. HasCallStack => [a] -> a
head [Finite n]
results) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)]
finitesProxy :: KnownNat n => proxy n -> [Finite n]
finitesProxy :: forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> [Finite n]
finitesProxy proxy n
_ = [Finite n]
forall (n :: Nat). KnownNat n => [Finite n]
finites
modulo :: KnownNat n => Integer -> Finite n
modulo :: forall (n :: Nat). KnownNat n => Integer -> Finite n
modulo Integer
x = Finite n
result
where
result :: Finite n
result = if Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal Finite n
result Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0
then [Char] -> Finite n
forall a. HasCallStack => [Char] -> a
error [Char]
"modulo: division by zero"
else Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite (Integer
x Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal Finite n
result)
moduloProxy :: KnownNat n => proxy n -> Integer -> Finite n
moduloProxy :: forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer -> Finite n
moduloProxy proxy n
_ = Integer -> Finite n
forall (n :: Nat). KnownNat n => Integer -> Finite n
modulo
equals :: Finite n -> Finite m -> Bool
equals :: forall (n :: Nat) (m :: Nat). Finite n -> Finite m -> Bool
equals (Finite Integer
x) (Finite Integer
y) = Integer
x Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
y
infix 4 `equals`
cmp :: Finite n -> Finite m -> Ordering
cmp :: forall (n :: Nat) (m :: Nat). Finite n -> Finite m -> Ordering
cmp (Finite Integer
x) (Finite Integer
y) = Integer
x Integer -> Integer -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` Integer
y
natToFinite :: (KnownNat n, KnownNat m, n + 1 <= m) => proxy n -> Finite m
natToFinite :: forall (n :: Nat) (m :: Nat) (proxy :: Nat -> *).
(KnownNat n, KnownNat m, (n + 1) <= m) =>
proxy n -> Finite m
natToFinite proxy n
p = Integer -> Finite m
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite m) -> Integer -> Finite m
forall a b. (a -> b) -> a -> b
$ proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal proxy n
p
weaken :: Finite n -> Finite (n + 1)
weaken :: forall (n :: Nat). Finite n -> Finite (n + 1)
weaken (Finite Integer
x) = Integer -> Finite (n + 1)
forall (n :: Nat). Integer -> Finite n
Finite Integer
x
strengthen :: KnownNat n => Finite (n + 1) -> Maybe (Finite n)
strengthen :: forall (n :: Nat). KnownNat n => Finite (n + 1) -> Maybe (Finite n)
strengthen (Finite Integer
x) = Maybe (Finite n)
result
where
result :: Maybe (Finite n)
result = if Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Maybe (Finite n) -> Finite n
forall a. HasCallStack => Maybe a -> a
fromJust Maybe (Finite n)
result)
then Finite n -> Maybe (Finite n)
forall a. a -> Maybe a
Just (Finite n -> Maybe (Finite n)) -> Finite n -> Maybe (Finite n)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite Integer
x
else Maybe (Finite n)
forall a. Maybe a
Nothing
shift :: Finite n -> Finite (n + 1)
shift :: forall (n :: Nat). Finite n -> Finite (n + 1)
shift (Finite Integer
x) = Integer -> Finite (n + 1)
forall (n :: Nat). Integer -> Finite n
Finite (Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
1)
unshift :: Finite (n + 1) -> Maybe (Finite n)
unshift :: forall (n :: Nat). Finite (n + 1) -> Maybe (Finite n)
unshift (Finite Integer
x) = if Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
1
then Maybe (Finite n)
forall a. Maybe a
Nothing
else Finite n -> Maybe (Finite n)
forall a. a -> Maybe a
Just (Finite n -> Maybe (Finite n)) -> Finite n -> Maybe (Finite n)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite n) -> Integer -> Finite n
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
weakenN :: (n <= m) => Finite n -> Finite m
weakenN :: forall (n :: Nat) (m :: Nat). (n <= m) => Finite n -> Finite m
weakenN (Finite Integer
x) = Integer -> Finite m
forall (n :: Nat). Integer -> Finite n
Finite Integer
x
strengthenN :: KnownNat n => Finite m -> Maybe (Finite n)
strengthenN :: forall (n :: Nat) (m :: Nat).
KnownNat n =>
Finite m -> Maybe (Finite n)
strengthenN (Finite Integer
x) = Maybe (Finite n)
result
where
result :: Maybe (Finite n)
result = if Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Maybe (Finite n) -> Finite n
forall a. HasCallStack => Maybe a -> a
fromJust Maybe (Finite n)
result)
then Finite n -> Maybe (Finite n)
forall a. a -> Maybe a
Just (Finite n -> Maybe (Finite n)) -> Finite n -> Maybe (Finite n)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite Integer
x
else Maybe (Finite n)
forall a. Maybe a
Nothing
shiftN :: (KnownNat n, KnownNat m, n <= m) => Finite n -> Finite m
shiftN :: forall (n :: Nat) (m :: Nat).
(KnownNat n, KnownNat m, n <= m) =>
Finite n -> Finite m
shiftN fx :: Finite n
fx@(Finite Integer
x) = Finite m
result
where
result :: Finite m
result = Integer -> Finite m
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite m) -> Integer -> Finite m
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Finite m -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal Finite m
result Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal Finite n
fx
unshiftN :: (KnownNat n, KnownNat m) => Finite m -> Maybe (Finite n)
unshiftN :: forall (n :: Nat) (m :: Nat).
(KnownNat n, KnownNat m) =>
Finite m -> Maybe (Finite n)
unshiftN fx :: Finite m
fx@(Finite Integer
x) = Maybe (Finite n)
result
where
result :: Maybe (Finite n)
result = if Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Finite m -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal Finite m
fx Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Maybe (Finite n) -> Finite n
forall a. HasCallStack => Maybe a -> a
fromJust Maybe (Finite n)
result)
then Maybe (Finite n)
forall a. Maybe a
Nothing
else Finite n -> Maybe (Finite n)
forall a. a -> Maybe a
Just (Finite n -> Maybe (Finite n)) -> Finite n -> Maybe (Finite n)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite n) -> Integer -> Finite n
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Finite m -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal Finite m
fx Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Maybe (Finite n) -> Finite n
forall a. HasCallStack => Maybe a -> a
fromJust Maybe (Finite n)
result)
weakenProxy :: proxy k -> Finite n -> Finite (n + k)
weakenProxy :: forall (proxy :: Nat -> *) (k :: Nat) (n :: Nat).
proxy k -> Finite n -> Finite (n + k)
weakenProxy proxy k
_ (Finite Integer
x) = Integer -> Finite (n + k)
forall (n :: Nat). Integer -> Finite n
Finite Integer
x
strengthenProxy :: KnownNat n => proxy k -> Finite (n + k) -> Maybe (Finite n)
strengthenProxy :: forall (n :: Nat) (proxy :: Nat -> *) (k :: Nat).
KnownNat n =>
proxy k -> Finite (n + k) -> Maybe (Finite n)
strengthenProxy proxy k
_ (Finite Integer
x) = Maybe (Finite n)
result
where
result :: Maybe (Finite n)
result = if Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Maybe (Finite n) -> Finite n
forall a. HasCallStack => Maybe a -> a
fromJust Maybe (Finite n)
result)
then Finite n -> Maybe (Finite n)
forall a. a -> Maybe a
Just (Finite n -> Maybe (Finite n)) -> Finite n -> Maybe (Finite n)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite Integer
x
else Maybe (Finite n)
forall a. Maybe a
Nothing
shiftProxy :: KnownNat k => proxy k -> Finite n -> Finite (n + k)
shiftProxy :: forall (k :: Nat) (proxy :: Nat -> *) (n :: Nat).
KnownNat k =>
proxy k -> Finite n -> Finite (n + k)
shiftProxy proxy k
p (Finite Integer
x) = Integer -> Finite (n + k)
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite (n + k)) -> Integer -> Finite (n + k)
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ proxy k -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal proxy k
p
unshiftProxy :: KnownNat k => proxy k -> Finite (n + k) -> Maybe (Finite n)
unshiftProxy :: forall (k :: Nat) (proxy :: Nat -> *) (n :: Nat).
KnownNat k =>
proxy k -> Finite (n + k) -> Maybe (Finite n)
unshiftProxy proxy k
p (Finite Integer
x) = if Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< proxy k -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal proxy k
p
then Maybe (Finite n)
forall a. Maybe a
Nothing
else Finite n -> Maybe (Finite n)
forall a. a -> Maybe a
Just (Finite n -> Maybe (Finite n)) -> Finite n -> Maybe (Finite n)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite n) -> Integer -> Finite n
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- proxy k -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal proxy k
p
add :: Finite n -> Finite m -> Finite (n + m)
add :: forall (n :: Nat) (m :: Nat).
Finite n -> Finite m -> Finite (n + m)
add (Finite Integer
x) (Finite Integer
y) = Integer -> Finite (n + m)
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite (n + m)) -> Integer -> Finite (n + m)
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
y
sub :: Finite n -> Finite m -> Either (Finite m) (Finite n)
sub :: forall (n :: Nat) (m :: Nat).
Finite n -> Finite m -> Either (Finite m) (Finite n)
sub (Finite Integer
x) (Finite Integer
y) = if Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
y
then Finite n -> Either (Finite m) (Finite n)
forall a b. b -> Either a b
Right (Finite n -> Either (Finite m) (Finite n))
-> Finite n -> Either (Finite m) (Finite n)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite n) -> Integer -> Finite n
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
y
else Finite m -> Either (Finite m) (Finite n)
forall a b. a -> Either a b
Left (Finite m -> Either (Finite m) (Finite n))
-> Finite m -> Either (Finite m) (Finite n)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite m
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite m) -> Integer -> Finite m
forall a b. (a -> b) -> a -> b
$ Integer
y Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
x
multiply :: Finite n -> Finite m -> Finite (n GHC.TypeLits.* m)
multiply :: forall (n :: Nat) (m :: Nat).
Finite n -> Finite m -> Finite (n * m)
multiply (Finite Integer
x) (Finite Integer
y) = Integer -> Finite (n * m)
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite (n * m)) -> Integer -> Finite (n * m)
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* Integer
y
getLeftType :: Either a b -> a
getLeftType :: forall a b. Either a b -> a
getLeftType = [Char] -> Either a b -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"getLeftType"
combineSum :: KnownNat n => Either (Finite n) (Finite m) -> Finite (n + m)
combineSum :: forall (n :: Nat) (m :: Nat).
KnownNat n =>
Either (Finite n) (Finite m) -> Finite (n + m)
combineSum (Left (Finite Integer
x)) = Integer -> Finite (n + m)
forall (n :: Nat). Integer -> Finite n
Finite Integer
x
combineSum efx :: Either (Finite n) (Finite m)
efx@(Right (Finite Integer
x)) = Integer -> Finite (n + m)
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite (n + m)) -> Integer -> Finite (n + m)
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Either (Finite n) (Finite m) -> Finite n
forall a b. Either a b -> a
getLeftType Either (Finite n) (Finite m)
efx)
combineProduct :: KnownNat n => (Finite n, Finite m) -> Finite (n GHC.TypeLits.* m)
combineProduct :: forall (n :: Nat) (m :: Nat).
KnownNat n =>
(Finite n, Finite m) -> Finite (n * m)
combineProduct (fx :: Finite n
fx@(Finite Integer
x), Finite Integer
y) = Integer -> Finite (n * m)
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite (n * m)) -> Integer -> Finite (n * m)
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
y Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal Finite n
fx
separateSum :: KnownNat n => Finite (n + m) -> Either (Finite n) (Finite m)
separateSum :: forall (n :: Nat) (m :: Nat).
KnownNat n =>
Finite (n + m) -> Either (Finite n) (Finite m)
separateSum (Finite Integer
x) = Either (Finite n) (Finite m)
result
where
result :: Either (Finite n) (Finite m)
result = if Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Either (Finite n) (Finite m) -> Finite n
forall a b. Either a b -> a
getLeftType Either (Finite n) (Finite m)
result)
then Finite m -> Either (Finite n) (Finite m)
forall a b. b -> Either a b
Right (Finite m -> Either (Finite n) (Finite m))
-> Finite m -> Either (Finite n) (Finite m)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite m
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite m) -> Integer -> Finite m
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (Either (Finite n) (Finite m) -> Finite n
forall a b. Either a b -> a
getLeftType Either (Finite n) (Finite m)
result)
else Finite n -> Either (Finite n) (Finite m)
forall a b. a -> Either a b
Left (Finite n -> Either (Finite n) (Finite m))
-> Finite n -> Either (Finite n) (Finite m)
forall a b. (a -> b) -> a -> b
$ Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite Integer
x
separateProduct :: KnownNat n => Finite (n GHC.TypeLits.* m) -> (Finite n, Finite m)
separateProduct :: forall (n :: Nat) (m :: Nat).
KnownNat n =>
Finite (n * m) -> (Finite n, Finite m)
separateProduct (Finite Integer
x) = (Finite n, Finite m)
result
where
result :: (Finite n, Finite m)
result = (Integer -> Finite n
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite n) -> Integer -> Finite n
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal ((Finite n, Finite m) -> Finite n
forall a b. (a, b) -> a
fst (Finite n, Finite m)
result), Integer -> Finite m
forall (n :: Nat). Integer -> Finite n
Finite (Integer -> Finite m) -> Integer -> Finite m
forall a b. (a -> b) -> a -> b
$ Integer
x Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`div` Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal ((Finite n, Finite m) -> Finite n
forall a b. (a, b) -> a
fst (Finite n, Finite m)
result))
isValidFinite :: KnownNat n => Finite n -> Bool
isValidFinite :: forall (n :: Nat). KnownNat n => Finite n -> Bool
isValidFinite fx :: Finite n
fx@(Finite Integer
x) = Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Finite n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal Finite n
fx Bool -> Bool -> Bool
&& Integer
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
0