| (Num s, Additive s, Atomic s) => NumCat Inc s Source # | |
Instance detailsDefined in ConCat.Incremental |
| (CoerceCat (->) a b, CoerceCat k a b) => CoerceCat (GD k :: Type -> Type -> Type) (a :: Type) (b :: Type) Source # | |
Instance detailsDefined in ConCat.GAD |
| (RepCat (->) a r, RepCat k a r) => RepCat (GD k :: Type -> Type -> Type) (a :: Type) (r :: Type) Source # | |
Instance detailsDefined in ConCat.GAD |
| (OkCAR (GD k a b), IfCat (:>) (Rep (GD k a b))) => IfCat (:>) (GD k a b) Source # | |
Instance detailsDefined in ConCat.GAD |
| AssociativePCat k => AssociativePCat (GD k) Source # | |
Instance detailsDefined in ConCat.GAD |
| (ProductCat k, ConstCat k Bool, Ok k Bool) => BoolCat (GD k) Source # | |
Instance detailsDefined in ConCat.GAD |
| BraidedPCat k => BraidedPCat (GD k) Source # | |
Instance detailsDefined in ConCat.GAD |
| Category k => Category (GD k) Source # | |
Instance detailsDefined in ConCat.GAD |
| MonoidalPCat k => MonoidalPCat (GD k) Source # | |
Instance detailsDefined in ConCat.GAD |
| OkAdd k => OkAdd (GD k) Source # | |
Instance detailsDefined in ConCat.GAD |
| ProductCat k => ProductCat (GD k) Source # | |
Instance detailsDefined in ConCat.GAD |
| UnitCat k => UnitCat (GD k) Source # | |
Instance detailsDefined in ConCat.GAD |
| (TerminalCat k, CoterminalCat k, ConstCat k b, Additive b) => ConstCat (GD k) b Source # | |
Instance detailsDefined in ConCat.GAD |
| (ProductCat k, ConstCat k Bool, Eq a, Ok2 k a Bool) => EqCat (GD k) a Source # | |
Instance detailsDefined in ConCat.GAD |
| (ScalarCat k s, Ok k s, Floating s) => FloatingCat (GD k) s Source # | |
Instance detailsDefined in ConCat.GAD |
| (LinearCat k s, Additive s, Fractional s) => FractionalCat (GD k) s Source # | |
Instance detailsDefined in ConCat.GAD |
| (IxProductCat k h, Functor h, FunctorCat k h) => FunctorCat (GD k) h Source # | |
Instance detailsDefined in ConCat.GAD |
| (ProductCat k, ConstCat k Bool, Ok2 k Bool a) => IfCat (GD k) a Source # | |
Instance detailsDefined in ConCat.GAD |
| (IxMonoidalPCat (->) h, IxMonoidalPCat k h, Zip h) => IxMonoidalPCat (GD k) h Source # | |
Instance detailsDefined in ConCat.GAD |
| (IxProductCat (->) h, IxProductCat k h, Zip h) => IxProductCat (GD k) h Source # | |
Instance detailsDefined in ConCat.GAD |
| (ProductCat k, Ok k a, Ord a) => MinMaxCat (GD k) a Source # | |
Instance detailsDefined in ConCat.GAD |
| (LinearCat k s, Additive s, Num s) => NumCat (GD k) s Source # | |
Instance detailsDefined in ConCat.GAD |
| OkFunctor k h => OkFunctor (GD k) h Source # | |
Instance detailsDefined in ConCat.GAD |
| OkIxProd k h => OkIxProd (GD k) h Source # | |
Instance detailsDefined in ConCat.GAD |
| (ProductCat k, ConstCat k Bool, Ord a, Ok2 k a Bool) => OrdCat (GD k) a Source # | |
Instance detailsDefined in ConCat.GAD |
| (RepresentableCat (->) g, RepresentableCat k g) => RepresentableCat (GD k) g Source # | |
Instance detailsDefined in ConCat.GAD |
| (ZapCat k h, OkFunctor k h, Zip h) => ZapCat (GD k) h Source # | |
Instance detailsDefined in ConCat.GAD |
| (ZipCat k h, OkFunctor (GD k) h) => ZipCat (GD k) h Source # | |
Instance detailsDefined in ConCat.GAD |
| (AddCat (->) h a, AddCat k h a, OkFunctor (GD k) h) => AddCat (GD k) h a Source # | |
Instance detailsDefined in ConCat.GAD |
| (DistributiveCat (->) g f, DistributiveCat k g f) => DistributiveCat (GD k) g f Source # | |
Instance detailsDefined in ConCat.GAD |
| (ProductCat k, MinMaxFFunctorCat k h a, Ord a) => MinMaxFunctorCat (GD k) h a Source # | |
Instance detailsDefined in ConCat.GAD |
| (OkFunctor (GD k) h, Pointed h, PointedCat k h a) => PointedCat (GD k) h a Source # | |
Instance detailsDefined in ConCat.GAD |
| (TraversableCat (->) t f, TraversableCat k t f) => TraversableCat (GD k) t f Source # | |
Instance detailsDefined in ConCat.GAD |
| HasRep (GD k a b) Source # | |
Instance detailsDefined in ConCat.GAD |
| OkCAR (GD k a b) => GenBuses (GD k a b) Source # | |
Instance detailsDefined in ConCat.GAD |
| type Ok (GD k) Source # | |
Instance detailsDefined in ConCat.GAD |
| type Rep (GD k a b) Source # | |
Instance detailsDefined in ConCat.GAD type Rep ( GD k a b) = a -> b :* k a b |