(MonoidalPCat k, CoproductPCat k, Ok k r, OkAdd k, Additive r) => BraidedPCat (Cont k r) Source # | |
Instance detailsDefined in ConCat.Continuation |
Category (Cont k r) Source # | |
Instance detailsDefined in ConCat.Continuation |
(MProductCat k, TerminalCat k, CoterminalCat k, CoproductPCat k, OkAdd k, Ok k r) => MonoidalPCat (Cont k r) Source # | |
Instance detailsDefined in ConCat.Continuation |
(ProductCat k, CoproductPCat k, AbelianCat k, OkAdd k, Ok k r) => ProductCat (Cont k r) Source # | |
Instance detailsDefined in ConCat.Continuation |
(Zip h, IxCoproductPCat k h, Additive1 h, OkAdd k, Ok k r) => IxMonoidalPCat (Cont k r) h Source # | |
Instance detailsDefined in ConCat.Continuation |
(IxCoproductPCat k h, Zip h, Additive1 h, OkAdd k, Ok k r) => IxProductCat (Cont k r) h Source # | |
Instance detailsDefined in ConCat.Continuation |
(OkIxProd k h, Additive1 h, OkAdd k) => OkIxProd (Cont k r) h Source # | |
Instance detailsDefined in ConCat.Continuation |
HasRep (Cont k r a b) Source # | |
Instance detailsDefined in ConCat.Continuation |
type Ok (Cont k r) Source # | |
Instance detailsDefined in ConCat.Continuation |
type Rep (Cont k r a b) Source # | |
Instance detailsDefined in ConCat.Continuation type Rep ( Cont k r a b) = k b r -> k a r |