Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Experimenting with formulations of gradient descent minimization
Synopsis
- maximize :: (HasV R a, Zip (V R a), Eq a) => R -> D R a R -> a -> a
- minimize :: (HasV R a, Zip (V R a), Eq a) => R -> D R a R -> a -> a
- maximizeN :: (HasV R a, Zip (V R a), Eq a) => R -> D R a R -> a -> (a, Int)
- minimizeN :: (HasV R a, Zip (V R a), Eq a) => R -> D R a R -> a -> (a, Int)
- chaseN :: (HasV R a, Zip (V R a), Eq a) => R -> (a -> a) -> a -> (a, Int)
- chase :: (HasV R a, Zip (V R a), Eq a) => R -> Unop (a -> a)
- chaseL :: (HasV R a, Zip (V R a)) => R -> (a -> a) -> a -> [a]
- maximizeL :: (HasV R a, Zip (V R a)) => R -> D R a R -> a -> [a]
- minimizeL :: (HasV R a, Zip (V R a)) => R -> D R a R -> a -> [a]
- fixBy :: (a -> a -> Bool) -> Unop (Unop a)
- fixByN :: (a -> a -> Bool) -> Unop a -> a -> (a, Int)
- fixN :: Eq a => Unop a -> a -> (a, Int)
- fixEq :: Eq a => Unop (Unop a)
- (*^) :: (HasV R a, Functor (V R a)) => R -> Unop a
- negateV :: (HasV R a, Functor (V R a)) => Unop a
- (^+^) :: forall a. (HasV R a, Zip (V R a)) => Binop a
- (^-^) :: forall a. (HasV R a, Zip (V R a)) => Binop a